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Gene expression is a multistep process that involves the transcription, translation and turnover of messenger RNAs and
proteins. Although it is one of the most fundamental processes of life, the entire cascade has never been quantified on a
genome-wide scale. Here we simultaneously measured absolute mRNA and protein abundance and turnover by parallel
metabolic pulse labelling for more than 5,000 genes in mammalian cells. Whereas mRNA and protein levels correlated
better than previously thought, corresponding half-lives showed no correlation. Using a quantitative model we have
obtained the first genome-scale prediction of synthesis rates of mRNAs and proteins. We find that the cellular abundance
of proteins is predominantly controlled at the level of translation. Genes with similar combinations of mRNA and protein
stability shared functional properties, indicating that half-lives evolved under energetic and dynamic constraints.
Quantitative information about all stages of gene expression provides a rich resource and helps to provide a greater

understanding of the underlying design principles.

The four fundamental cellular processes involved in gene expression
are transcription, mRNA degradation, translation and protein degra-
dation. It is now clear that each step of this cascade is controlled by
gene-regulatory events". Although each individual process has been
intensively studied, little is known about how the combined effect of all
regulatory events shapes gene expression. The fundamental question of
how genomic information is processed at different levels to obtain a
specific cellular proteome has therefore remained unanswered.

With regard to a quantitative description of gene expression,
numerous previous studies comparing mRNA and protein levels con-
cluded that the correlation is poor**. However, the available data
suffer from several limitations. Most studies are limited to a few
hundred genes, mainly due to the technical challenges involved in
large-scale protein identification and quantification. Also, protein
levels measured in one experiment are typically compared to
mRNA levels determined in a different experiment performed at a
different time in a different laboratory, making it difficult to interpret
why the correlation is low. Finally, mRNA and protein levels result
from coupled processes of synthesis and degradation. Therefore, ana-
lysis of mRNA and protein levels alone cannot provide sufficient
information to understand gene expression comprehensively.
mRNA and protein turnover can be measured with drugs to inhibit
transcription or translation>®, but this has severe side effects. Studies
based on artificial fusion proteins are problematic because tagging can
affect protein stability’.

To overcome these limitations we sought to quantify cellular mRNA
and protein expression levels and turnover in parallel in a population
of unperturbed mammalian cells. Pulse labelling with radioactive
nucleosides or amino acids is regarded as the gold standard method
to determine mRNA and protein half-lives. Recently, variants of this
approach based on non-radioactive tracers have been established®'°.
In stable isotope labelling by amino acids in cell culture (SILAC), cells
are cultivated in a medium containing heavy stable-isotope versions of
essential amino acids''. When non-labelled (that is, light) cells are
transferred to heavy SILAC growth medium, newly synthesized proteins
incorporate the heavy label while pre-existing proteins remain in the

light form. This strategy can be used to measure protein turnover'>'* or

relative changes in protein translation'*'. Similarly, newly synthesized
RNA can be labelled with the nucleoside analogue 4-thiouridine (4sU).
4sU-containing mRNA can be purified and compared with the pre-
existing fraction to compute mRNA half-lives'.

Pulse labelling of proteins and mRNAs

We used parallel metabolic pulse labelling with amino acids and 4sU
to measure simultaneously protein and mRNA turnover in a popu-
lation of exponentially growing non-synchronized NIH3T3 mouse
fibroblasts (Fig. 1a). Protein samples were collected at three time
points, measured by liquid chromatography and online tandem mass
spectrometry (LC-MS/MS) and analysed with the MaxQuant soft-
ware package'”. We identified 84,676 peptide sequences and assigned
them to 6,445 unique proteins (false discovery rate <1% at the peptide
and protein level). A total of 5,279 of these proteins was quantified by
at least three heavy to light (H/L) peptide ratios (Fig. 1b). Tissue-
specific amino acid precursor pools and recycling rates, a pervasive
problem for in vivo pulse labelling experiments>'®'?, did not appre-
ciably affect our results (Supplementary Fig. 1). For constant incorp-
oration rates the logarithm of H/L ratios should increase linearly with
time (Fig. 1c). Ninety-three per cent of proteins showed excellent
linear correlation indicated by a variability of the linear regression
slope smaller than 1% (Fig. 1d). Protein abundance did not influence
H/L ratio measurements (Supplementary Fig. 2). In total, we obtained
a confident set of 5,028 protein half-lives calculated from the slope of
the regression line. Cycloheximide chase experiments for selected
proteins spanning a representative range of half-lives agreed well with
half-lives determined by pulsed labelling and mass spectrometry
(Supplementary Fig. 3). In parallel, we pulse labelled newly synthe-
sized RNA for 2 h with 4sU. RNA samples were fractionated into the
newly synthesized and pre-existing fractions. Both fractions and the
total RNA sample were analysed by mRNA sequencing and quantified
by mapping reads to their exonic region®. We calculated mRNA half-
lives based on the ratios of newly synthesized RNA/total RNA ratio
and the pre-existing RNA/total RNA™.
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Figure 1 | Parallel quantification of mRNA and protein turnover and levels.
a, Mouse fibroblasts were pulse labelled with heavy amino acids (SILAC, left)
and the nucleoside 4-thiouridine (4sU, right). Protein and mRNA turnover was
quantified by mass spectrometry and next-generation sequencing, respectively.
b, Mass spectra of peptides from a high- and low-turnover protein reveal

Proteins were, on average, five times more stable (median half-life of
46 h) than mRNAs (9 h) and spanned a bigger dynamic range (Fig. 2a).
Because very long (>200h) and very short (<30 min) protein half-
lives cannot be accurately quantified from our three time points, the
true dynamic range of protein stabilities may be even higher. Notably,
we found no correlation between protein and mRNA half-lives (Fig. 2c,
R* =0.02, log-log scale).

Absolute mRNA and protein copy numbers

We calculated absolute cellular mRNA copy numbers based on the
number of sequencing reads in the unfractionated sample in conjunction
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Figure 2 | mRNA and protein levels and half-lives. a, b, Histograms of
mRNA (blue) and protein (red) half-lives (a) and levels (b). Proteins were on
average 5 times more stable and 900 times more abundant than mRNAs and
spanned a higher dynamic range. ¢, d, Although mRNA and protein levels
correlated significantly, correlation of half-lives was virtually absent.
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Harvesting time point Variability of linear regression slope (%)

increasing heavy to light (H/L) ratios over time. ¢, Protein half-lives were
calculated from log H/L ratios at all three time points using linear regression.
d, Variability of linear regression slopes assessed by leave-one-out cross-
validation was small.

with information on cellular mRNA content®. Absolute protein copy

numbers can be inferred from mass spectrometry data*"*. To this end,
we used the sum of peak intensities of all peptides matching to a specific
protein. When divided by the number of theoretically observable pep-
tides, this value provides an accurate proxy for protein levels (‘intensity-
based absolute quantification’ or iBAQ, see Supplementary Methods).

Levels of detected proteins spanned approximately five orders of
magnitude (Fig. 2b). Relatively few proteins had less than 100 copies
per cell, indicating that some proteins of low abundance escaped
detection. Indeed, we observed a moderate detection bias (Sup-
plementary Fig. 4) and therefore restricted our analysis to genes that
were identified at both the mRNA and protein level. In this subset,
proteins were, on average, ~900 times more abundant than corres-
ponding transcripts. Despite a huge spread, mRNA and protein levels
were clearly correlated (Fig. 2d, R* = 0.41, log-log scale). This cor-
relation is considerably higher than in any previous study in mam-
mals®>***. An attempt to improve this correlation further by nonlinear
transformation resulted only in a marginal increase (R>= 0.4,
Supplementary Fig. 5). It seems that for our data set, this is about
the maximum correlation between mRNA and protein that can be
achieved without additional information.

Reproducibility

To investigate the experimental noise we performed a second inde-
pendent large-scale experiment and measured mRNA and protein
levels and half-lives again. The overall correlation of half-lives and
levels between both replicates was good (Supplementary Fig. 6 and
Supplementary Table 1). Removing less-consistent data points did
not increase correlation between mRNA and protein levels or half-
lives (Supplementary Fig. 7). Thus, noise has little impact on the
observed correlation between mRNA and protein levels and half-lives.
We also validated absolute mRNA and protein copy numbers using
independent methods. For mRNA copy numbers we used the
NanoString technology, which captures and counts individual tran-
scripts without enzymatic reactions®. Correlation between sequen-
cing and NanoString data was high (r = 0.79, see also Supplementary
Fig 8a). Absolute protein quantification was validated by spike-in
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experiments using a mixture of 48 proteins with known concentra-
tions (Supplementary Fig. 8b). iBAQ values correlated well with
known absolute protein amounts over at least four orders of mag-
nitude and had a higher precision and accuracy than alternative mea-
sures of absolute protein abundance (data not shown)*"**. We also
assessed degradation and synthesis rates for mRNAs and proteins by
actinomycin D and cycloheximide treatment, respectively. For high
turnover proteins and mRNAs we obtained results consistent with
pulse labelling data (Supplementary Fig. 8c-f).

A quantitative model of gene expression

Our data allow us to calculate average synthesis rates of mRNAs and
proteins for thousands of genes using a mathematical model (Fig. 3a
and Supplementary Methods). The experimental data are based on a
population of non-synchronized cells. Therefore, our estimated rates
provide an average over the population and time.

Average cellular transcription rates predicted by the model spanned
two orders of magnitude with a median of about two mRNA molecules
per hour (Fig. 3b). An extreme example was Mdm2 with more than 500
mRNAs per hour. A microscopic study on the cytomegalovirus (CMV)
promoter reported transcription termination rates of 5.8 to 8.7 mRNAs
per hour®. These values are above the median of our predictions, as
perhaps expected for a strong promoter system. Next, we calculated
translation rate constants; that is, how many proteins are made from
each mRNA template per hour (Fig. 3¢c). We find a median translation
rate constant of about 40 proteins per mRNA per hour. Several proteins
involved in translational regulation—such as the translation initiation
factor eIF4Gl, fragile X syndrome related protein Fxr2 and tuberin—
had extremely low rate constants and were translationally repressed.
Plotting translation rate constants against protein levels revealed that
abundant proteins are translated about 100 times more efficiently than
those of low abundance (Fig. 3d). Hence, different translation efficiencies
contribute to the higher dynamic range of proteins compared to mRNAs
(Fig. 2b). Intriguingly, translation rate constants saturated at around 180
protein copies per mRNA per hour. To our knowledge, the maximal
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Figure 3 | Quantitative model of gene expression in growing cells.

a, mRNAs are synthesized with the rate v, and degraded with a rate constant
kq;. Proteins are translated and degraded with rate constants kg, and kqp,
respectively. b, Calculated mRNA transcription rates show a uniform
distribution. ¢, Calculated translation rate constants are not uniform.

d, Translation rate constants of abundant proteins saturate between
approximately 120 and 240 proteins per mRNA per hour. Red line shows the
locally weighted fit (Lowess). Dashed lines indicate 95% confidence intervals of
the Lowess maximum value calculated by bootstrapping.
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translation rate constant in mammals is not known. On the basis of ref. 1,
the estimated maximal translation rate constant in sea urchin embryos
is 140 copies per mRNA per hour, which is surprisingly close to the
prediction of our model.

Control of gene expression

A long-standing question is how much protein abundance is con-
trolled at the transcriptional, post-transcriptional, translational and
post-translational levels. Until now, this has mainly been addressed
indirectly by analysing mRNA and protein sequence features. Features
related to translation initiation (for example, Shine-Dalgarno, Kozak
and 3’ untranslated region (UTR) sequences), elongation (for example,
codon bias) and protein stability (for example, degrons) have been ana-
lysed and reported to correlate partially with protein/mRNA ratios in
bacteria, yeast and mammals®?***. We also observed sequence features
characteristic of mRNA and protein stability and found that mRNAs
with long 3’ UTRs are, on average, less stable (Supplementary Fig. 9). In
addition, the density of AU-rich elements and binding motifs of a spe-
cific RNA-binding protein (pumilio 2) correlated negatively with
mRNA stability (Supplementary Fig. 10). Highly structured proteins
were more stable than unstructured ones (Supplementary Fig. 11a).
We also identified amino acids over-represented in unstable proteins
(Supplementary Fig. 11b).

Sequence features are at best indirect proxies for mechanisms con-
trolling protein abundance. How much efficiencies of different steps in
the gene expression cascade contribute to variance of cellular protein
copy numbers can only be revealed by direct parallel genome-scale
measurements of mRNA and protein levels and half-lives which were
not available previously. In our data the coefficient of determination
(R?) between mRNA and protein copy numbers is 0.41 (Fig. 2d).
Assuming the absence of technical and biological noise, this means
that ~40% of the variance in protein levels is explained by mRNA
levels—considerably more than previously thought (Fig. 4a). Most of
this 40% is due to different transcription rates, whereas mRNA stability
has a smaller role. Considering translation rate constants markedly
boosts R* to 0.95. Thus, translation rate constants have the dominant
role for control of protein levels. Unexpectedly, the impact of protein
degradation is rather small.

In the above analysis the same experimental data were used to
calculate synthesis rates and to estimate their impact on protein levels.
To avoid this over-fit and to assess reliability of the model predictions
we performed the same analysis with data from the biological replicate
experiment. In the replicate the coefficient of determination between
mRNA and protein levels was 0.37 (Fig. 4b). We then used the model
including the estimated parameters from the first experiment to pre-
dict protein levels from mRNA levels in the replicate data. Predicted
protein levels agreed very well with measured protein levels
(R*=0.85, Fig. 4¢). Therefore, the model explains ~85% of the vari-
ability in protein copy numbers in an independent experiment. The
correlation is very similar to the direct comparison of protein levels in
both experiments (R* = 0.84, Supplementary Fig. 6d). We conclude
that technical and biological noise in our data are low, and that the
model faithfully predicts protein levels from mRNA levels in mouse
fibroblasts. It also indicates that the estimated impact of transcription,
mRNA stability, translation and protein stability on protein abund-
ance is reproducible. We finally assessed how much of the efficiencies
of the various steps in gene expression are retained in a different cell
type and organism. To this end, we quantified mRNA and protein
abundance in the human breast cancer cell line MCF7 by RNA-seq
and mass spectrometry, respectively. A total of 2,030 human genes
from the MCF?7 data set had orthologues in the mouse fibroblast data.
We then used rates from the mouse fibroblast model to predict protein
levels from mRNA levels in human breast cancer cells. In MCF?7 cells,
the model predicted ~60% of the variability in protein levels (Fig. 4a).
Although the fraction explained by the model is smaller than in mouse
fibroblasts, this indicates that translation and degradation rates are to
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Figure 4 | Impact of different rates and rate constants on protein
abundance. a, Protein levels are best explained by translation rates, followed by
transcription rates. mRNA and protein stability is less important (left bar). b, In
the replicate experiment mRNA levels explained 37% of protein levels in
NIH3T3 cells (middle bar in a). ¢, The model explains 85% of variance in
protein levels from measured mRNA levels (middle bar in a). The mouse
fibroblast model has some predictive power for human orthologous genes in
MCF?7 cells (right bar in a). Error bars show 95% confidence intervals estimated
by bootstrapping.

some extent independent of the cell type and conserved between mouse
and human. It is noticeable, however, that the drop in prediction is
mainly due to the fact that the translation part of the model performs
less well.

Half-lives and gene function

Degradation of proteins is critically involved in many cellular processes
including cell-cycle progression, signal transduction and apoptosis**~*.
Similarly, mRNA stability is important for the temporal order of gene
induction'®*'. Genes may have evolved specific combinations of mRNA
and protein half-lives under functional constraints'**"**>. We therefore
asked if genes with specific combinations of mRNA and protein stability
have distinct biological functions. We grouped genes according to their
half-lives and used gene ontology to find enriched biological processes
(Fig. 5; see Supplementary Table 2 for a complete list).

Genes with stable mRNAs and stable proteins were enriched in
constitutive cellular processes like translation (that is, ribosomal
proteins), respiration and central metabolism (glycolysis, citric acid
cycle). Hence, many housekeeping genes tend to have stable mRNAs
and proteins. In yeast energy costs keep transcription and translation
rates under selective pressure®. We reasoned that energy constraints
may explain why housekeeping genes tend to have stable mRNAs and
proteins. On the basis of the model, we calculated the theoretical
energy required to maintain cellular mRNA and protein levels by
recycling from their building blocks (nucleotide monophosphates
and amino acids, respectively) in terms of high energy phosphates.
This is a conservative estimate as splicing, folding and transport are
not included. Protein synthesis consumes more than 90% of the
energy whereas less than 10% is needed for transcription. A total of
20% of the proteins consumed 80% of the energy for translation
(Pareto principle or 80/20 rule). Consistent with optimization under
energy constraints, abundant proteins were significantly more stable
than less abundant ones (Supplementary Fig. 12a, P<<10" ‘7,
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Figure 5 | Functional characteristics of genes with different mRNA and
protein half-lives. Genes were grouped according to their combination of
mRNA and protein half-lives and analysed for enriched gene ontology terms. A
heat map of enrichment P-values reveals functional similarities of genes with
similar combinations of half-lives.

Wilcoxon test). This is not necessarily expected because the overall
contribution of protein stability to protein levels is very small
(Fig. 4a). In addition, abundant proteins were significantly shorter
(Supplementary Fig. 12b). Shuffling protein half-lives and lengths
markedly increased theoretical energy consumption (Supplementary
Fig. 12¢). Collectively, these observations indicate that mammalian gene
expression evolved under energy constraints.

The subset of genes with unstable mRNAs and proteins was strongly
enriched in transcription factors, signalling genes, chromatin modifying
enzymes and genes with cell-cycle-specific functions (Fig. 5). Because
mRNAs and proteins are information carriers, their degradation can be

©2011 Macmillan Publishers Limited. All rights reserved



interpreted as a built-in timer that controls the persistence of genetic
information™. It therefore makes intuitive sense that many regulatory
genes have short mRNA and protein half-lives. However, it must be
stressed that population-level data cannot provide information about
individual cells or molecules.

The group of genes with stable proteins but unstable mRNAs was
strongly enriched in terms related to processing of mRNAs, tRNAs and
non-coding RNAs. Hence, many mammalian RNA-binding proteins
are stable whereas their encoding transcripts are short lived, as also
found in yeast®. Because many RNA-binding proteins bind their own
message’, this observation is indicative of a post-transcriptional nega-
tive feedback loop for RNA-binding proteins. Consistently, we found
that unstable mRNAs are enriched for binding motifs of RNA-binding
proteins (Supplementary Fig. 10).

Finally, the subset of genes with stable mRNAs and unstable proteins
was rich in extracellular proteins. This is expected, as secreted proteins
have a short cellular half-life. Additionally, this group contains proteins
involved in cellular homeostasis, defence response and proteolysis. This
set contains two ferritin proteins that are rapidly upregulated in res-
ponse to iron”’. Ferritins are classic examples of translationally regu-
lated genes. As translational regulation is not dependent on mRNA
half-lives, genes with stable mRNAs can still be dynamically regulated
as long as their protein half-lives are short. It is tempting to speculate
that other homeostasis genes in this group are regulated at the level of
translation.

Discussion

Although gene expression is one of the most fundamental processes in
biology it has never been quantified comprehensively. We provide the
first analysis of mRNA and protein levels, half-lives, transcription
rates and translation rate constants for thousands of genes. In the
future, additional methods like sequencing of nascent transcripts
and ribosome profiling may further refine this picture®®*.

We found that mRNA levels explain around 40% of the variability
in protein levels. This fraction is higher than in previous studies on
mammals>***. We found that in mouse fibroblasts, translation effi-
ciency is the single best predictor of protein levels. Hence, protein
abundance seems to be predominantly regulated at the ribosome,
highlighting the importance of translational control*>*'. Whether this
observation is valid in other cell types is not known. A recent study on
embryonic stem cells revealed that changes in protein levels are not
accompanied by changes in corresponding mRNAs*. It is also not
clear how much translation rate constants change under different
conditions. Our observation that the mouse model can to some degree
predict levels of orthologous proteins in MCF7 cells suggests that
translation efficiency is partially ‘hard-coded” in the genome and is
not subject to change.

Compared to translational control, protein stability seems to have a
minor role in cellular protein abundance in our system. This is sur-
prising as protein degradation is involved in the regulation of many
cellular processes®* . From the global perspective, the dominance of
translational regulation makes sense given the high energy costs
associated with protein synthesis. However, it should also be stressed
that our data set represents average values derived from a population
of dividing, non-synchronized cells. At the single cell level, the role of
protein degradation for protein abundance may be higher. Similarly,
protein degradation may be more important upon perturbation.

Gene expression may follow certain design principles for optimal
evolutionary fitness. Intriguingly, we found that genes with certain
combinations of mRNA and protein half-lives share common func-
tions, indicating that they evolved under similar constraints. One of
these constraints may be energy efficiency™. Consistently, we observed
that the theoretical energy needed for gene expression is much lower
than random. A second constraint may be the ability of genes to
respond quickly to a stimulus. We find that many transcription factors
and genes with cell-cycle-specific function have unstable mRNAs and
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proteins, predisposing them to rapid transcriptional and/or trans-
lational regulation. In addition, genes with stable mRNAs but unstable
proteins can be regulated quickly at the level of translation. These
observations are consistent with the idea that many fast-responding
genes have short protein and/or mRNA half-lives'®*"*>**, The global
picture is that most mRNAs and especially proteins are stable unless
genes need to respond quickly to a stimulus. Owing to the trade-off
between dynamic regulation and energy efficiency, this may be an
optimal design.

Our data provide a rich resource for the scientific community that

can be mined in many ways that are beyond the scope of this study
(see Supplementary Table 3 for the entire data set). For example, we
provide by far the largest data set on protein copy numbers, which
contains valuable information for modelling of cellular processes and
stoichiometry of protein complexes®. Half-lives of proteins and
mRNAs can be used to search for properties of unstable mRNAs or
proteins, and we provide a first analysis of characteristic sequence
features (Supplementary Figs 9 and 10). Genome-scale quantitative
data on absolute mRNA and protein levels and half-lives will certainly
help to understand the complex relationships between thousands of
genes and their products in biological systems.
Note added in proof: While this paper was in revision, another paper*!
reported that changes in mRNA levels in dendritic cells are mainly
determined by transcription rates. This result is consistent with our
findings in fibroblasts. Notably, mRNA half-lives reported in ref. 44
are considerably shorter (see Supplementary Information for a brief
discussion).

METHODS SUMMARY

NIH3T3 cells grown in light (L) SILAC medium were simultaneously pulse-
labelled with heavy (H) amino acids and 4-thiouridine (4sU). For proteome
analysis, proteins were extracted, separated by SDS-polyacrylamide gel electro-
phoresis (PAGE), trypsin-digested and analysed by LC-MS/MS on high-resolution
instruments (LTQ-Orbitrap XL and Velos, Thermo Fisher). Raw files were pro-
cessed by MaxQuant (version 1.0.13.13) for peptide/protein identification and
quantification. In total 3,588,163 fragment spectra led to 972,333 peptide identi-
fications (84,676 unique peptide sequences) that were assigned to 6,445 unique
proteins (false discovery rate of 1% at the peptide and protein level). Average
absolute mass deviation was 0.29 parts per million (p.p.m.). Absolute protein
amounts were calculated as the sum of all peptide peak intensities divided by
the number of theoretically observable tryptic peptides (intensity based absolute
quantification, or iBAQ). RNA was extracted and separated into newly synthesized
and pre-existing fractions based on the incorporated 4sU. Total, pre-existing
and newly synthesized RNA samples were processed according to an mRNA
sequencing protocol (two rounds of oligo(dT) enrichment) and analysed on a
Solexa GAIIX sequencing platform (36 cycles). Reads were mapped to the mouse
genome reference sequence (mm9, July 2007) using SOAP2 with a maximum of
two mismatches allowed. Only uniquely mapped reads were retained. For more
details on data acquisition, processing, analysis and modelling see Supplementary
Methods.
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